Nabla discrete fractional calculus and nabla inequalities
نویسنده
چکیده
Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .
منابع مشابه
Matrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملGronwall's inequality on discrete fractional calculus
We introduce discrete fractional sum equations and inequalities. We obtain the equivalence of an initial value problem for a discrete fractional equation and a discrete fractional sum equation. Then we give an explicit solution to the linear discrete fractional sum equation. This allows us to state and prove an analogue of Gronwall's inequality on discrete fractional calculus. We employ a nabla...
متن کاملThe Delta - Nabla Calculus of Variations
The discrete-time, the quantum, and the continuous calculus of variations have been recently unified and extended. Two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we propose a more general approach to the calculus of variations on time scales that allows to obtain both delta and nabla r...
متن کاملThe Variational Calculus on Time Scales
Abstract. The discrete, the quantum, and the continuous calculus of variations, have been recently unified and extended by using the theory of time scales. Such unification and extension is, however, not unique, and two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we review a more genera...
متن کاملHenstock–Kurzweil delta and nabla integrals
We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 51 شماره
صفحات -
تاریخ انتشار 2010